Drosophila Homeodomain Protein dHb9 Directs Neuronal Fate via Crossrepressive and Cell-Nonautonomous Mechanisms

نویسندگان

  • Heather T. Broihier
  • James B. Skeath
چکیده

Here we present the identification and characterization of dHb9, the Drosophila homolog of vertebrate Hb9, which encodes a factor central to motorneuron (MN) development. We show that dHb9 regulates neuronal fate by restricting expression of Lim3 and Even-skipped (Eve), two homeodomain (HD) proteins required for development of distinct neuronal classes. Also, dHb9 and Lim3 are activated independently of each other in a virtually identical population of ventrally and laterally projecting MNs. Surprisingly, dHb9 represses Lim3 cell nonautonomously in a subset of dorsally projecting MNs, revealing a novel role for intercellular signaling in the establishment of neuronal fate in Drosophila. Lastly, we provide evidence that dHb9 and Eve regulate each other's expression through Groucho-dependent crossrepression. This mutually antagonistic relationship bears similarity to the crossrepressive relationships between pairs of HD proteins that pattern the vertebrate neural tube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila homeodomain protein Nkx6 coordinates motoneuron subtype identity and axonogenesis.

The regulatory networks acting in individual neurons to control their stereotyped differentiation, connectivity, and function are not well understood. Here, we demonstrate that homeodomain protein Nkx6 is a key member of the genetic network of transcription factors that specifies neuronal fates in Drosophila. Nkx6 collaborates with the homeodomain protein Hb9 to specify ventrally projecting mot...

متن کامل

The Drosophila homolog of Onecut homeodomain proteins is a neural-specific transcriptional activator with a potential role in regulating neural differentiation

We report here the characterization of the Drosophila homolog of the onecut homeobox gene, which encodes a protein product with one cut domain and one homeodomain. We present evidence that D-Onecut can bind to similar DNA sequences with high specificity and affinity as other Onecut proteins through the highly conserved cut domain and homeodomain. Interestingly, the cut domain alone can mediate ...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

Specification of motoneuron fate in Drosophila: integration of positive and negative transcription factor inputs by a minimal eve enhancer.

We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target. Here we investigate the mechanisms by which ev...

متن کامل

Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors.

In Drosophila, cell-fate determination of all neuroectoderm-derived glial cells depends on the transcription factor Glial cells missing (GCM), which serves as a binary switch between the neuronal and glial cell fates. Because the expression of GCM is restricted to the early phase of glial development, other factors must be responsible for the terminal differentiation of glial cells. Expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2002